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MEMORANDUM 090024554 
To: T .C .  Greengard 
From: B.P. Doty 
Date : July 16, 1987 

Subject: Revised Analysis of 881 Hillside Radiometric Data 

As you are aware, our recent report on RI activities at the 
881 Hillside (Rockwell International, 1987b) reported low 
level plutonium-239 and americium-241 contamination of ground 
and surface waters in the vicinity of the 881 Hillside. The 
contamination was at least an order of magnitude lower than 
the drinking water standards for these elements. The report 
was prepared quickly to meet the regulatory deadline and was 
based on laboratory data for which QA/QC were not complete. 
The laboratory has provided revised results (Rockwell 
International, 1987a) that do not clearly indicate 
radionuclide contamination of ground water (surface water data 
have not yet been evaluated). The amended data are presented 
in Table 1. 

The amended data indicate that plutonium and americium 

histogram of the frequency of plutonium measurements occuring 
in 0.2 picoCurie per liter (pCi/l) ranges is presented as 
Figure 1. Most of the values fall in the range of 0.0 to less 
than 0.2 pCi/l and values less than 0.6 are visually within 
the same population (distribution is probably log-normal). 
Values o f  0.8 pCi/l and greater appear to be outside the 
reasonable range for the low concentration population. 
However, the higher values do not appear to be significantly 
different from the low valued population when the range is 
considered. 

contamination o f  the ground water is highly unlikely. A 

Ranges are reported f o r  radiometric analyses because the 
disintegration of radioactive elements is a probabalistic 
event, i.e., there is a certain probability that successive 
measurements of particle emission from the same sample will 
vary over a certain range. It can be shown that a single 
observation from a distribution that is binomial, as is true 
of radioactive disintegration rates, gives both an estimate of 
the mean and an estimate of the variance of the distribution 
(Friedlander et al., 1964 - page 1 7 5 ) .  Friedlander et al. 
(1964) go on to show that the standard deviation (square root 
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of the variance) is equal to the square root of the ratio of 
the disintegration rate to the time of counting (in actual, 
unscaled counts). Hence, we can be reasonably confident that 
the Iftrue** value is in a band defined by the repdrted value, 
plus or minus the range. 

This concept appears validated in the plutonium data under 
consideration by the fact that successive analyses of 3 of the 
5 high valued wells fall within the low valued population. 
The remaining two wells do not have repeated analyses but have 
ranges sufficiently great that the I1true" value could be in 
the low valued population. These factors are shown on Table 2 
and are indicated on Figure 1. 

Similar logic can be applied to the americium data. Most of 
the values fall in the range of 0 . 0  to less than 0 . 2  pCi/l 
(Figure 2 ) .  There are four higher valued results, one of 
which has a second analysis within the low valued population. 
Two of the others have ranges that could easily place the 
"true" value in the low valued population. Only one of the 
americium results (well 9-74) is significantly high. This may 
be due to actual elevation of americium in the ground water 
near the well or may be due to laboratory error or 
interferences (QA/QC is not complete for the 9-74 data). 

Therefore, it is concluded that plutonium and americium 
contamination of ground water in the vicinity of the 881 
Hillside Area is unlikely. However, it is recommended that 
monitoring be continued to validate this conclusion. 

0168585 
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Table 1. 

Well 

1 - 71 
1 - 71 
9 - 74 
54 - 86 
55 - 86 
55 - 86 
59 - 86 
59 - a6 
61 - 86 
61 - 86 
62 - 86 
62 - 86 
64 - 86 
65 - 86 
65 - 86 
68 - 86 
69 - 86 
2 - a7 
4 - a7 
5 - a7 
8 - a7 
3 - 87 

881 Hillside - Plutonium and Americium 
Radiometric Data 

Date EU-239 

3/ 9/ 07 .9 
51 I/ a7 .1 
51 IO/ a7 . 55 
5/ 28/ 87 
51 i9/ a7 
s/ 281 a7 

3 1  111 a7 
51 s/ a7 

4/ 9/ 07 
4/ 30/ 87 

4/ 10/ 07 
4/ 30/ 87 
4/ 29/ 87 
5/ 1S/ 87 
5/ 29/ 07 

4/ 29/ 07 
4/ 291 a7 

ooa . 03 . 07 
.oo 

. 9  
4.0 . 29 

.o 

.o 

.2 
.oo 
16 
00 
. o  

5/ 29/ a7 09 
6/ 16/ 07 .2  
51 201 a7 00 
61 121 a7 .oo 
61 is/ a7 1.7 

, 

Range 

.63 
1.5 . 39 
- 7 5  . 65 . a2 . a4 
1.1 
6.9 
.86 
1.1 
1.3 
1.1 
.65 

.8S 
2.1 

1.3 
1.1 
.5s 
.55 
1.9 

.7a 

Am-241 

.o 

.o 
6.6 

09 
.o 
.o 
00 
.o 
29 
00 
00 
00 
00 
.o 
00 

2.3 
.o 
.o 
.o 
.o 
.o 
.o 

Range 

1.8 
2.6 
3.9 

3.7 
4.2 
1.2 
1.6 
1.3 
.86 
1.3 
1.3 
1.4 
1.4 
1.3 
1.2 
2.9 
1.3 

6.0 
4.1 
2.6 
3.0 
1.5 

Notes: 

All data are in pCi/l. 
Range (standard deviation) indicates numerical band 

in which successive measurements can be 
confidently expected to fall. 

Data revised July 10, 1987 except f o r  data f o r  well 
9-74 which QA/QC is not complete. 

0168586 
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Table 2. Explanation of Apparent High Plutonium Values 

Second Analysis 
Falls in Low Range Includes L o w  

Well Valued Population Valued Population 

1-7 1 
59-86 
61-86 
2-87 
8-87BR 

X 
X 
X 
X 
X 

X 
X 
X 

T a b l e  3.  

Well 

9-74 
54-86 
6 1-8 6 
68-86 

Explanation of Apparent High Americium Values 

Range Includes L o w  Falls in L o w  
Valued Population Valued Population 

Second Analysis 

? 
X 
X 
X 

Notes: 
9-74 data QA/QC not complete. 

X 

0168587 
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Statistical Considerations 

in Radiouctivity Measurements 

The radioactive-decay law discuased in chapter 3 describes the average behav- 
ior of a sample of radioactive atom. In measurements of radioactive decay 
we are concerned with observations which show fluctuations about the average 
hehavior p r d a t e d  by the decay law. Therefore we ahall discuss in this chap- 
ter the applications of statistical methods to the treatment of radioactivity 
measurements. 

A. DATA WITH RANDOM FLUCTUATIONS 

Consider the set of data actually obtained with a Geiger counter measuring 
a “steady” source, as given in table 6-1. The  number of count  recorded per 
minute (the counting rate) is clearly not uniform. Which minute gave the 
most accurate rault?  The best thing we can do is to compute the arithmetic 
mean (the average value) and coriaider it a8 representing the proper counting 
rate. What we are trying to do is to estinlate from a finite number of obeer- 
vations the results of an essentially infinite number of observations. In  par- 
ticular, we wish to estimate the average value that we would find and the 
distribution of the observed values about that average. 

If the determinations, minute by minute, am denoted 
by 11, 22, . . . xi for the first, second, . . . i t h  minute, then the arithmetic 
mean value 3 is, by definition, 

Average Value. 

i- N+ 

where No is the number of values of z to be averaged. 
in the table It = 990/10 = 99.0. 

For the counting rates 

‘ 166 
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Tablo 6-J 

Mini1 to Cuun tr A4 A, ’ 

1 
2 
3 
4 
6 
6 
7 

9 
10 

a 

89 
120 

Q4 
110 
105 
108 

a3 
101 
95 

a5 

Totale 990 

- 10 
$21 
-6 

+I1 
+6 
+9 

-1.1 
- I6 
+2 
- 4  

0 
- 

100 
44 1 
2s 

121 
36 
81 

196 
256 

4 
16 

1276 
- 

This average value ia the beet estimate that we can make of the “true” 
average, 2,  which ia the average we would find for an irifiiiite number of 
o bserva tiona. 

Standard Deviation. The distribution of the observed results about % is a 
measure of the precision of the data and can be described by giving all of the 
“moments” of the dbtribution; that is, the quantities 

N. 

I 

1 
No 

(6-2) 

for all values of n. The first moment (n = 1) will alwaye vanish because of 
the, definition of 3,; the other odd momenta (expression (6-2) bvith “n” an odd 
number] will vanish only if the distribution is symmetrical nhout it, and ft is 
then the moat probable value of z. Usually just the second niomerit [expres- 
sion (62) with rz = 2, called the variance and denoted by u,*\ is given in  
practice. The square root of the variance is called the standard deviatiori 0,. 
This quautity lis particularly significant becauac of the fortit of the so-clrllvd 
normal distribution law which is expected to describe the diutributioii of expcri- 
mental results with random errors: 

where P(z) dz ia the probability of observing a value of I in the interval I - 
z + dx. 

I n  our example, which contains a finite number of observations, we do not 
know 3,; we have only an estimate of it: 2. Under these circumstances the 
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I x ! R t  possihlo cstimntc of the variance is 

: ’,, , :’ ’ . : I . .  :. 
. . .  . -  

. .. 

No - 1 
ut2 - 

i - l  

((1-4) 

l‘or the data in table (I-1 we compute rt2 = 1276/0 = 141.8; us = 11.9. The 
diffcrcricc bctwccn cquatioiiu ((i-2) and (6-4) is noteworthy. The division by 
(NO - 1) iu ((4) instcad of by No is a consequence of cotimatiiig thc unknown 
quantity 2, from No olmrvntions; this cstimation uses up one of the ohscr- 
vatiow and leaves only (No - 1) independent quantities for the estimation 
of tho varinnco. Thc validity of this rcaaoning becomes clear when we con- 
aidcr thc cxtrcmc cam of only a singlc obscrvation. Evidently, from a single 
obscrvation we can have no idea of the preciaion of the measurement, unless 
special assumptions are made, This problem is a fundamental one in statisti- 
cal analysis and is discusacd in standard texta on the subject (cf., for example, 
B 1  and Fl). 

Precision of Average Value. In the preceding discussion we have been 
concerned with estimating, from No observations, the resulta that would he 
obtained from a very large number of observations. It is now necessary to 
discuss the precision of our estimation which is not to be confused with the 
precision of the data, although the two quantitiea are related. We are here 
concerned with two things: 

1. The distribution of the values of z given by (6-1) from many sets of 
experiments, each with a finite No. 

2. The distribution of the quantities ust obtained from the same seta of 
observations by (6-4). 

The formal statistical analyRis of these two problems, as discussed in atand- 
ard texta (Fl), is contained in the X2-teat of the randomness of the data, the 
t-test of the reliability of 2 as an estimate of ~t,, and the F-test of the reliability 
of ust as an estimate of the true variance of the sample. 

Our main interest is in the first question, the reliability of 2; a messure of 
this reliability ie the variance of u mean which ia estimated by the variance 
of the aet of observationa divided by No: 

X. 

The quantity ug2 is our beat estimate of the second moment of the dbtri- 
hution of average values that would be found from an infinite number of wtr 

nte, each containing No observations of which table 6-1 is an 
value of us from table 61 is d141.8/10 = 3.76. . -  

0168592 
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Thc significniicc. of this quantity, for a riorrntll distritmtiori, is fouiid i i i  the 
4- c l i  irc stntomcmt t h u t  tho pro\)al)ility of oluwrviiig u v u l w  of .P \wt\w*ii i utid 

, 
8 

Rejection of Data. The question often arises whether a particular datum 
should he rejcctcd lmausc of its rulativcly largc! deviation frorti the nic‘air. I i r  

tablc 6-1 thc olmrvntioti of 120 caurits during tfic s c m ~ i c l  niiiititc is siispcact I 

as pcrhapa, though to a lcsvcr dcyrw, is thc o1)wrvatioir of 83 couiitu duriiig 
thr! eighth minute. Thia is riot riccesvnrily to say that tlicw ol)scrvtltiotis arc. 
wrong (that the error is ayRtcniatic ratiicr that1 ratidom), hut tlilrt dwitltiotin 
of this magnitude among a small numhcr of ol)scrwtioi\s may have air iiiiduc 
influence on the mean value that is computed. Thus the criteria for rcjectiori 
should consider not only the magnitudc of .the deviation but also the nuliitwr 
of obaervatioris made. A criterion established ~ J Y  Chauveiict which iiicludca 
both factors (the magnitudc of the deviation and the number of observations) 
allows the rejection of an ohsetvation if deviatioris from the niean that are 
equal to or greater t h m  the one in qucstion have a probahiiity of occurteiice 
that is leas than l/(2.Vo). In our example the counting rate during the rjecond 
millute may bc rejected only if the probability of observing countiilg rates that 
deviate by at least 21 countu from the mean of !IO courita is less than 0.05. 
We compute this prohability by using (6-3) to obtain the probtrhility I’ of 
observing a count between 78 and 120: 

,--- 

1 - P =  1 exp [***I 2 - 141.8 tlr. 

The value of the integral, as found in  the Handlouk of Chemidry a i d  I’hysics, 
is 0.92; thus 1 - IJ  ie 0.08 arid the datum must be retained. If No had been 
six, or lees, then thc datum would have been rejected. When G datum ia 
rejected, a new i! m u d  he computed, and Chauvenet’e criteriori may be applied 
to the remaining suspect data, but w i t h  No being decreaed by one each time 
that an observation ia excluded. 

t 

8. PR08ABJLl7Y AND THE COMPOUNDING OF PROBABILITIES 

The ideas and definitions just presented may be applied, with varying degrees 
of usefulness, to any set of data, whether or not strictly random pheiiomeiia 
are involved. Before procecditig, we muat consider the concept of pro1d)ility 
in greater detail. As illustrations we shall investigate the answers to questions 
such as these: 
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1. What in ttic proMdity that n card drnwii from a dcck will hc nn ace? 
2. If a coiir in flipped twice, what is tho probability that it will fall “heads 

:i. (iivcii u nnniplc of LL radionctivc inatcrid, what is thc prohaldity that 
cwctly 1 0  disiiitcgratioiiv will occiir during thc ncxt minute? 

Wc! shall dcfiiic prohahility iii this way: given a act of No objects (or events, 
or resriits, ctc.) coiitaiiiiiig n l  objects of the first kind, n2 objccts of thc second 
kitid, aiitl t i ;  ohjccts of tlic ith kitid, the probability pi that an object specified 
otrly rm I)cloiigiiig to tlrc sct is of the i t h  kind is givcn by pi = ni/No. By 
applyiiig ttiia dcfiiiitioii wc fitid that the probability that one card drawn from 
n full dcck will be 011 ace is just A. 
Wc may i m v  rcwritc the dcfiiiitioii of the average value 3 of a set of quanti- 

tics xi, taking into account thc possibility that any partipular value may appear 
scveral, say ni, times. Thcri 

11]P t I O  t*t  I ti lm4? 

This may he generalized, and the expression for the average value of any 
function of 2 is 

In  particular, 

- 
/(XI * &i/(zi)* (W 

(6-7) 
a result that will be useful to us later. 

In  experimental measurements we may make a large number K of obaer- 
vationa and find the i th  result k, times. Now the ratio ki/K is not the proba- 
bility p;  of the ith result as we have defined it ,  but for our purposes we assume 
that k i / K  approachea arbitrarily closely to pi aa K becomes very large: 

- 
u,t = ZPi(Zi - 2)’ = z2 - 2’ 

“hie aesumption is not aubjcet to mathematical proof becauee a limit may n3t  
be evaluated for a aeries with no law of sequence of terms. 

Addition Theorem. W e  turn now to the compounding of several proba- 
bilities and consider first the addition theorem. Given a set of NO objects 
(or events, or resulta, etc.) containing ni objects of the kind ai and given that 
the kinds ai, at, . . . ai have no members in common, the probability that 
one of the No objects belongs to a combined group a1 + uz + - ai is juat 

pi. Thus for two mutually exclusive events with probabilities pl and pz 

i- j 

i- I 

the probability of one or the other occurring ie just pl + p2. When one card ie 
drawn from a full deck, the chance of ita being either a five or a ten is + 

. .  

0168593 
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= A. (Wlicii OIW draw oiic card whilc shady Iioldiiig, uay, four cartln, 
lion0 of which iti a five or ten, thc prot)ahility thcri of gcttiiiy either a five or a 
toil IN nllKlrtly g r ~ d w ,  + td - 1, proviclvci !hut t I i w  irr rrvuilulh~ iio i i iLr-  
malion rvgtrrditig tho idciitity of othtar cardB thtit niuy trlrctltly h v c  t)tw witli-  
drawn.) Whcii a coin is hstjcd, the protiability of either “heads” or “tailu” is 
. ) + + = 1 .  

Multiplication Theorem. Another type of conipounding of probabilities is 
described by the multiplication theorem. If  thc prot)ability of aii eveiit i ia p, 
and if aftcr i has happened the prohability of another eveiit j is p,, then tlic 
probability that first i and theit j \vi11 happen ie pi X p,. I f  a coil1 ia tossed 
twice, the probability of getting “heads” twice is 3 X 4 = +. If two cards 
are drawn from an initially full dcck, tlic prot)ability of two aces is & X 2,. 
The probability of four aces in four cards drawii is as X (‘l’lie 
probability of drawing five aces in five cards is X & X Q r  = 0.) 

Binomial Distribution. The binoiiiial distribution law treats oiie fairly 
general case of compounding probahilitiea and can be derived by the appli- 
cation of the addition and multiplication theorems. Given a very large uet of 
objects in  which thc Frobability of occurrence of an object of a particular kind 
w is p, then, if n objects are withdrawn from the set, the probability Il’(r) that 
exactly r of the objecta are of the kind w is given by 

X & X -&, . 
X A X 

- 

n! 
(n - r)!r! 

W(r) = p‘(1 - p)”? 

To see how this combination of terms actually represents t.he Frobability in 
question, think for a moment of just r of the n objects. That the first of thew 
ia of the kind w hat3 the probability p;  that the first aiid second are of the 
kind w haa the probability p’, OLC., and the probability that all r objectn are 
of the kind w is p’. But, if exactly r of the n objects are to  be of this kind,  
the remaining n - t objects must be of some other kind; this probatdity is 
(1 - p)“-‘. Thue we see that for a particular choice of r ot):ecte out of the 
n objecta tho probability of exactly r of kind w is p‘( 1 - p)”-‘; this particular 
choice ie not the only one. The fimt of the r objects might he clioaeii (froin 
the n objects) in p dilferent ways, the second in n - 1 wayti, thc tliiid il l  

n - 2 ways, arid the rth in n - r + 1 ways. The product of these terms, 
n(n - l)(n - 2) (n - t + I ) ,  is n ! / ( n  - r)!, and this coefficieiit niiist 

be used to multiply the probability just found. But this coefficient is actu- 
ally too large in that it not only gives the total number of possible arrange- 
ments of the objects in the way required but also includes the nuiiiber of 
arrangemenh which differ only ia the order uf selection of the r objects. So 
we must divide by the number of permutations of r objects which in r!. Ttiun 
the final coefficient is nf/(n - r)!r!, which is that in (G8). The law (ti-8) is 
known as the binomial distribution law because this coefficient is just the 

- 

$ 1  
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coefficient of zrg"-' in the binomial expansion of (z + g)". Since in (0-B), 

z + y - p + ( l  - p ) ,  
we have 

a 

and the binomial distribution is seen to be normalized. 

n 

C. RADIOACTIVITY AS A STATISTICAL PHENOMENON 

Binomial Distribution for Radioactive Disintegrations. We may apply the 
binomial distribution law to find the probability W(m) of obtaining just m dit+ 
integrations in time f from No original radioactive atoms. We think of No 88 

the number n of objects chosen for observation (in our derivation of the 
binomial law), and we think of m as the number r that is to have a certain 
property (namely, that of disintegrating in time t ) ,  80 that for this case the 
binomial law becomes 

No! 
(No - m)h! W(m) = p"(1 - p)N.-". 

Now the probability of an atom not decaying in time 1, 1 - p in (6-9) , given 
by the ratio of the number N that aurvive the time interval t to the initial 
number No, 

p is then 1 - e-". We now have 

(6-10) 

Time Intervals between Disintegrations. Since the time of Schweidler'a 
derivation of the exponential decay law from probability coneideratione, the 
applicability of these etatietical laws to the phenomena of radioactivity ha8 
been tested in a number of experimente. As an example of the p i t i v e  evi- 
dence obtained, we consider the distribution of time intervals between dis- 
integratione. The probability of this time interval haviiig a value between 
t and t + df, which we write as P(f) df, is given by the product of the proba- 
bility of no disintegration bitween 0 and t and the probability of a disinte- 

0168$94 
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gration between t and t + dt. 
(6-10) with m - 0: 

The first of thwe two prohatditica ia 

173 

given \)y 

(Notice that 01 = 1.) The probability of any one of the N O  atoms disinte- 
grating in the time df is clearly, from the addition theorem, N o A  tit. [See 
chapter 1, p. 5, or obtain this result as W(1) from equation 6-10 with m = 1 ,  
t replaced by dt, and all terms in (df)* and higher powers of df neglected.] Theti 

P( i )  dt = NJe+oA' dt.  (6-1 1) 

Experiments designed to test this result usually measure a large numher a of 
time intervals between disintegrations and classify them in  to intervals differ- 
ing by the short but finite length At; then the probability for intervals het\r.eeu 
f and t 4- A1 should be NoXe-'e'' Af, and the number of measured intervals 
between 1 and t + At should be sN~e-*'O"' At. l'or example, ]-'eather foulid 
experimentally that the logarithm of the number of intervals betweell 1 a d  
t + At is proportional to t ,  as required by this formula. 

Another application of the binomial law 
to  radioactive disintegrations niay be wen if we calculate the average value 
of a set of numbers obeying the binomial distribution law. For the nionieiit 
we ahall revert to the  notation of (6-8) and for further convenience represeiit 
1 - p b y q :  

- 

Average Disintegration Rate. 

n! 
(n - r ) ! r !  W(r) = Prqn-' 

T h e  average value to be expected for r is obtained from (&A) : 

(6-12) 

n! 
(n - r ) ! r !  

prqn-r. 

To evaluate this awkward-appearing summation, consider the binomial expan- 
cion of (px + g)": 

- 

r - n  r - n  
v 

Differentiating with respect to x, we obtain 
8 

(6-13) 
r - 0  
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N o w  letting z - 1 and using g - 1 - p,  we have the desired expression 

r -0 

This result should not be surprising; it means that the average number ? of the 
n objects which are of the kind w is just n times the probability for any given 
one of the objects to be of the kind tu. 

The foregoing result may be interpreted for radioactive disintegration if n ia 
set equal to No and p - 1 - e-", as before. Then the average number 3f of 
a t o m  diaintegrating in the time t ia M = No(1 - e-'.'). For emall values of 
At, that is, for times of observation short compared to the half-life, we may w e  
the approximation e-" = 1 - ht and then M = Noht. The diaintegration 
rate R to be expected is R - A f / t  - Noh. (Thia correaponda to the familiar 
equation -dN/d t  - AN.) 

Expected Standard Deviation. What may we expect for the standard 
deviation of a binomial distribution? If we differentiate (6-13) again with 
respect to z, we obtain 

. .  . I  .^ . 

. 

Again letting z = 1 and using p + q = 1, we have 

Recall from (6-7) that the variance ut2 is given by 
- I '  

ur' - r' - J'. 

Now, combining, we have 

u,' - n(n - 1)p' + Q - P', 
and with t - np * 

For radioactive diaintegration this becomes 
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I n  counting practice Xf is u~lually amall; that ia, the observation time 1 is 
short compared to the half-life, aiid when thia ia 80, 

u = fi. (&Ida)  

W e  see here a particular exaniplc of a very iniportaiit property of the t)itio- 

mial distribution which, as prcsetitly shown, is true for the I’oissoti distrit)utioii 
also; that is, there is a simple relationship bctweeii the true nieati atid the t r w  
variance of thc distribution. X s  a consequeticc, a sitigle ot)servatiorr froiii ti 

distribution that is expected to be binomial, as is true of radioactive tfisititv- 
gration rates, gives both an estimate of the mean and an estimate of t h e  vari- 
ance of the distribution. Further, for a single observation, tlie estiniatc of tlit. 
variance of the distribution is also an estimate of the variance of the iwati. 
It must be immediately emphasized that these remarks art’ trot t r iw i i i  geiic*ral; 
the variance of a thermometer reading, of a length nicasurcd t)y a nirter Dtick, 
or of the reading of rr voltmeter catmot he estimated froni ti sirigle ot)sc*rvatiori 
and is not in general expected to be equal to the value otwrvctl. 

i f  a reasonably larze number m of counts has heen ol)taitied, that ttuniber VI 

may be used in the place of ’I‘liub, if 
100 counts are recorded in 1 minute, the expected staiidard deviation is u 2 
/- t 100 = 10, and the counting rate might be writteii 100 k 10 counts pc’r 

minute. I f  lo00 counts are recorded in 10 minutes, the staiidard deviatioii 
of this number is u E 4s = 32; the counting rate is (1000 k X?),’l(J = 
100 f 3.2 counts per minute. Thus we see that for a given courititig rate R 
the u for the rate is inversely proportional to the square root of tlie time of 
measurement : 

- 

for the purpose of evaltintitig u .  
8 

(6-15) 

What ia the result in an experiment in which the countitig time is long 
compared1 to the half-life? As Xt -. m ,  e-A‘ ---, 0, and, i l l  this limit, u = 
d p  = 0. The explanation is clear; if we start with .Vo atoms aiid w i t  
for all to  diaintegrate, then the number of diaiiitegrations is exactly ,Yo. HOIV- 
ever, iii actual practicc we observe not the number of disintegrations b u t  that 
number times a coefficient c which denotes the probability of a disititegratiotl 
resulting in  an observed count. Taking this into account, we see __-- that - i t i  this 
limiting case the proper representation of u = 6 is u = d.jr0c( 1 - c) .  If 
c << 1, then u = d c c  = dnumber of counts as before. Wtieii Xf S 1 and 
c is neither unity nor very small, a more exact analysis based on u = dnm 
should be made, with the result that u = d J i c ( 1  - c + ce-”). 
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The introduction of the detection coefficient c in the preceding paragraph 
may raina tho question why it is not neceseary to take account of this coofficient -- 
iii the tnoru familiar cnae wit i i  xi am811, where we have writtcri u = dm. li 
we do conaider c in this caae, we have for the probability of one atom pro- 
ducing a count in time 1, p = (1  - e-A')c and q = 1 - p = 1 - c + ce-A'. 
Then 

u = d ~ O ( 1  - e-A')c(l - c + ce+'), 
and for At small and the same approximations as before 

u = d N X  = &6 - dnurnber of counts recorded. 

Thin ia just the oonclusion we had reached without bothering about the detec- 
tion efficiency. It should be emphasized, however, that actual counta and not 
scaled counts from a scaling circuit must be used in these equationa. 

D. POISSON AND GAUSSlAN DISTRIBUTIONS 

Poisson Distribution. The binomial diatribution law (6-10) can be put into 
a more convenient form if we impose the restrictions At << 1 ,  No >> 1, m << NO, 
that is, if we consider a large number of active atoms observed for a time short 
compared to their half-lives. The derivation of this more convenient form 
requires the well-known mathematical approximation: 

Let us first define the average value of the distribution (G-10): 

A i  = No(l - e-A'). 

The binomial distribution may then be written a8 

NO NO W(m)  = (No 
Consider the term 
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For m << No thie term may be estimated by taking its logarithm aid uaing t lw 
first term of the approximation (O-l(i). The result is 

The term [1 - (ilf/No)]Na may also be estimated by the use of (!;-le), since 
M/No << 1, a condition that is equivalent to At << 1:  

1' 

(6-17b) 

-: Note that this time we use two terms of the expansion, since JI'/'L.Vo is not 
neceasarily small, even for M/No << 1. 

. * .  

Again, for M/No << 1, we imniediately have from (0-16) 

m J l  

(6- 17~) 

When the three approximate results (617a, b, c) are put into the hinomial dis- 
tribution] the result is 

where W(m) is the probability of obtaining the particular number of counts rn 
when df is the average number to be expected. The term outside the brackeb 
in (6-18): 

(6-19) 

in the famous Poisson distribution; the term within the brackeb may be con- 
aidered as a correction factor and is a measure of how well the binomial dis- 
tribution is approximated by the Poiseon. I t  is to be emphasized that the 
validity cif (6-19) as an approximation to (6-10) requires not oiily that a large 
number of a t o m  be observed for a time short compared to their half-lives, 
hut also that  the absolute value of (JI - m) be substantially smaller than 
dz. For example, if KO = 100 and ;If = 1, both the Poisson and binomial 
distributions give W(0)  = 0.37; but the binomial distribution gives Ir'(l0) = 
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0.7 X lo-', whereas the Poisson distribution (6-18) gives W(10) = 1.0 X lo-'. 
The correoted Poiaeon distribution (8-18) giver W(10) = 0.7 X lo-'. 

Two foaturca of the I'oiaeon distribution (8-IQ) might be notiaed in partiou- 
tar. The probability of obtaining m - 1CI - 1 iS equal to the probability of 

very nearly Symmetrical about m - 11 if values of m very far from M be 
excluded. 

A further approximation of the distribution law 
may be made for large m (say > 100) and for IM - ml << M. With these 

obtaining m = M ,  or W(M) = W ( M  - 1). For large M the distribution is 4 
I Gaussian Distribution. 

additional restrictions, with the approximate expansion, i 

M - m  ( M - m ) '  
l n ( l + M - m ) -  m 2m' , 

- 
neglecting subsequent terms, and with the use of Stirling'a approximation I 

I 

x!  = 4% xSe-2, 

we may modify the Poiseon distribution to obtain the Gaussian distribution: 

1 e- (M-m 1 'I 2 Y ,  W(m) = - 
42sM 

(6-20) 

It will be noticed that this distribution is symmetrical about m = M. For 
both the Poisaon and Gaussian distributions' we may derive u = fi, or, for 
large m, u 6. 

E. STATISTICAL INFERENCE AND BAYES' THEOREM 

As we mentioned at the outset of this chapter, the primary problem of sta- 
tistical inference is to estimate, from information available after only a finite 
iiumber of observations, the average value that would be obtained after an 
infinite number of experimental ohservationa of a given physical quantity. 

. In terms of (BlY), what we really wish to know, for example, is the proba- 

1 The functional dependence 8 - fi is a neceumry condition of the P o h n  but not of 
the Caueaian distribution. The general form of the Gaussian k 

where there k M B  le no relationehip between M ~d O. The relatiomhip betwem 8 d 
M for the Gaussian distribution of wunfinq rafu is a consequence of the particular muroe of 
random error: the fluctuation in the deaay rate combtent with a decay probability per unit 
time which irr independent of time. 

I .  
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bility that the number of detected disintegratkns of a radioactive wniplc 
(counts) is oharacterized by a mean value A i  when we have observed a value tn 

[we may denote this probability by l l "(M~m)), I<cluatioir (1-11) giws iiu tlw 
inverso of what we wish to know: the probaliility of ohaerviny m coulita u 1iw 
the sample is Characterized by a mean value AI [this inverse proLahility wv 
may denote as IY(mlM)]. These two conditional probabilities arc related to 
each other: 

I"(m) rrj(nrlm) = P ( A f )  If'(mlrll) ; (fi-2 1 

where P ( m )  ia the prim probabilily that the sample will give rn counts hefore 
ally observations have been made on the sample and P ( M )  iu the prior proba- 

that the sample is characterized by a mean number 0.f counls Jf before 
any obeervationR have been made on the sample. The reader \vi11 readily 
perceive that these so-called prior probabilities are troublesonie quantitieu. 
The two sides of (6-21) are equal to each other becauee each of them is eciual 
to the joint probability that a sample will be characterized by M meail of 
M counta und will exhibit experimentally m counts. T h e  quantity of interest 
W'(Mlm) may be readily obtained from (6-21): 

. - 1  

(6-22 

an exprwion which was first discussed by the Reverend Bayee some two cell 
turiee ago.' The ptior probabdilies P'(m) and P ( J f )  are related: 

r ' (m) = 2 zqni)rv(mlnr), 
Y -0 

0 :  

whiah states that if, in iome manner, P(M) is known, then through a cornhi- 
nation of the addition theorem and the multiplication theorem the prior proba- 
bility P'(m) must also be known. The final expresaion, then, is 

1 Il(ilf)lv(rnlni) 
.\I -0  

It of interest to note the implications of (6-23) for a sample that complies 
with the restrictions required by the Poisson distribution, that is, a sample 
containing a large number of atoms which is observed for a time bhort coni- 
pared to their half-life. Taking (0-19) for IV(m(M), we obtain from (6-23) 

((=.I 1 
P (M) (Jf -e-"/rn !) 

2 P ( M )  (fifme-M/m 1) 
W'(Mlrn) = 

M - 0  

discmion of conditional probability, ~ e e  chapter 6 of reference F1. For 
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It ie impossible to proceed without ai1 explicit expression for P ( J f ) ;  it ia at  
this p i n t  that the analysis can become metaphysical. We shall proceed by 
taking all valuolr of M &a boiirg equally probable: 

P ( M )  d M  = K dill. (6-23) 

With this assumption, the summation in the denominator of (fi-24) becomes an 
integral and we obtain 

M m! 

since 

hSme-M dM - mi. (6-27) 

It ia to be carefully noted that although the rigqt side of (6-26) is similar to 
that of (6-19), it has a different meaning. Equation 626  g i v a  the probability) 
under our choice of P(&f), that the sample has a mean between AI and A€ + d J f  
counta when m counta have been observed. From (6-28) i t  is eaaily found that 
the most probable value of A i  is m ;  through the use of (6-0), (6-7) and (6-27), it 
is found that the average value of M is m + 1 and tha* the standard deviation 
of the distribution law (6-26) is drn + 1. T h e  difference between the 
average and the most probable value of ilf irs unimportant for values of m that 
are not too small; for small values of m, for example m = 0, there is the quee- 
tion whether to eatimate M by the average or by the most probable value. 

To anewer thia queation we must be clear about the meaning of the average 
value of M .  It ie the value that would be obtained in the following experi- 
ment: take a very large collection of samples, eaoh of which had given m counta 
in a given time interval. Then the mean number of counta expected from 
each Bample i~ determined from the average of a very large number of obuerva- 
tions on each of the very large number of samples. It is theii the average 
value of thia very large number of mean values that is given by m + 1; and m 
is the mean value that is most frequently observed. 

Now, the observation of na counta was  made on one of thie large number of 
  amp lee; the question iB, which one? The beat answer ia the most probable 
one; that b, the aample for which M = m. This answer becomea more 
familiar if we consider the estimate of the mea11 counts expected from a sample 
after n observations which gave reauita mi, ma, . . . mu have been made upon 
it. An expreanion for W(Mlml, mt, . , , mu), the probability that the eamplo 
is characterized by a mean value M when n observations give the resultb 
ml, m2, . . . I m,, can be derived in the same way as (6-26): 
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The maximum of tliia distribution fuiictioii occna for 

.If - (ti-?!, I 

which is the average value of the set of ohservatioiis just as is cxpectcd froiii 
(6-1) * 

Information on the precisioii of the estimate for JI is contained iri tlic 
expresaioiis for the distribution function: ((3-26) or (G-28). Tlie precisioii of 
the estimate of !\I may bc characterizcd by the variaiicc of its distrii)utioii 
function: m + 1 for a siiiglc observatioii a i d  (mi  + in2 * - ni,, + 1) 1 4 '  for 
n o bserva tioiis. 

Variance, as computed above, may be used iii the iiorinal distrihutioii law 
(6-3). For ernall values of m, though, it is prohably best to discuu the data 
directly in terms of the distribution function (ti-28). l o r  cxaiiiple, if there is a 

0.99 that dl will be less than 4.6. If  the value of zero is ol)taiiied iii 10 i i r d t b -  

pendent obaervations, then there is a probability of O.!J!I that J f  will tw less 
that1 0.46. I 

In aumniary, tlieli, ior a11 observed number of couiits i i i  exccsti of ahout 100, 
the be& statement - that caii be made is the custoniary oiie ( t j -1-hJ that the nicaii 
value is m f d m  (taking rn + 1 S m); for tl sinall iiuniher of cowits tlic 
statement would be that the mean value is m aiid the emtiderice ill t l i r  state- 
ment caii be obtained from ((L.28). 

r n l  + tPl2 4- * ' * n 

t I  
I 

! 

single observation that givea m = 0, (ti-28) says t$at there is a probability of I 

. - -  ,.- 
_ A  . c  . -  

I 

F. EXPERIMENTAL APPLICATIONS 

Propagation of Errors. \\'henever experiiiieiital data are t ied ii i  t lie coiti- 
putation of a derived quantity, there is the questioii of the reintioriship l w t w w i  
the precisioii of the computed values aiid the precisioii of the iiiput iiiioriiiat i o i t .  

For example, a backgrouiid counting rate is to t)e subtracted fro in  ai1 otwrvtvi 
counting rate; or the ratio of the couiiting rates of two stiriipks ia used ti5 u 
measure of the relative numbers of atoms ill the sampierj. l ' ! t c ~  wrors i i i  t Iw 
computed valucs nmy be more readily estimated from those ot' tlic iitput tiatit 

if the error attached to cacli input datuiii is iiidcpciideirt of tlrut tittac.hf to  
aiiy other. 

Consitior t h o  iiidcpcirdciit nwantircmcvitn of two clriaiitit iva .L' a i d  !I, \I Iiich 
lead to the result that the probability of observiiry LI value ol' A* i w \ ~ v w i ~  .I rriitl 

r 4- dz is X ( r )  dx, aiid similarly for y ;  theii the iiidepeiidelwr of t lw Iiwasurc- 
menta means that the probability of haviiig a result with .r I)et\vecii .t* uitcl 
c + dx while u is between y aiid g + dy is 

. . .  
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We now atlk what is our beet estimate of mme cjuaiitity, j ,  which is a funotion, 
j(.c, u), of tho variablce 2 and y and what in the preoiaioii of our catimate of 
/? The anBwer to this question is suggested by (80) .  Our beat estimate of 
f(x, 0) is its average 

(6-30) 

Since the quantity that is sought it3 j& fit), it is instructive to examine 
the properties of (6-30) by making a Taylor expansion of j ( z ,  y) about the 
point 2, j which ie our best eetimate of 2,, g t :  

+ (2 - N Y  - Q) fry(*, 8) '+ * ' 

where fs(e, j), /&, Q), fLv(i!, j) eto., mean the partial derivatives af/a.z, 
a2j/at2, a'//dz ay, etc., evaluated at the point 3, 0. 

If f(z, g) is a sufficiently sIowly varying function in the region of 3, gj so that 
the higher derivatives are negligible, theu 

since 

For  the three elementary arithmetic operatiom, addition, subtraction, and 
multiplication, the Taylor series terminetea after a finite number of terms, and 
the exact reeulta - 

z + y - e + j ,  (6-334 - 
. t - y - i ! - g ,  (6-33b) 

(6-33c) i 

are obtained. Thie is not the result, however, for the elementary operation of 
divieion.4 
J See dincwion on p. 54 of reference B1 and p. 51 of reference B2. 
4 The quantity I/y aa evaluated by (630) will be infinite unless Y ( y )  approaches sem more 
rapidly than does y ( lim [ Y ( y ) / v ]  4 m) .  Thin infinity catastrophe ia usually avoided by 

F O  
r-trioting the values of y to thoee that have a relatively large likelihood-that is, cloee to J. 
When thin h done, (6-32) givea the ertirnate of j.  . -  
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If again a Taylor cxpansion is used aiid the higher order terms arc. ii~glected, 

( W 5  j 
then 

or2 = p ( 3 ,  j)or2 + .r,*<r, #)U+ * * * 

Exact expressions agaiu result for the variance of hiree of the c.leiiieiitar\* 

(Ci-Wa) 
arithmetic operations: 

*3.-- = + 
Z+U 

, , . ' -  . .  The third term in expression (ti-36c) is usually small compared to the first 
two ahd may be neglected. Similarly, the firet two terms of (6-35) are usually 
a good approximation f a x  the variance of other functions of .r and g. 

A8 ai1 example, suppose that the backgrouiid couliting rate of a counter is 
memired and GOO counts are recorded in 15 niiiiutes. Theii with a riaiiiple ill 
place the total countirlg rate is measured, a i d  1000 counts are recorded iii 

10 minutes. We wish to know tlie net counting rate due to the saiiiple a i d  
the standard deviatioii of this net rate. First the background rate Rb is 

The total rate Rl is 

= 100 3.2 counts per niiiiute. lOoO*dioM1 1OOOf32 
10 io Rf * 

The net rate R, = 100 - 40 = 60 counts per minute, its standard deviatioii 
h urn - di.O2 + 3.2i = 3.0, and R, = (30 f 3.6 couiits per mitiute. 

Gaussian Error Curve. Knowledge of the distribution law perillits a 
quantitative evaluation of the probability of a given deviatiori of a measured 
reault m from the proper average .If to he expected. With the absolute error 
1.X - ml = c,  and with the assumptiori that the iritegral iiunibem are 80 large 
that the distribution may be treated as continuous, the probability Il '(cj tlt  of 
an error between c and c + dc for the normal distribution is giveii by 

e-''/ 2.u tic. IY(c) dc = -- 2 

d2Zf (ti-37a) 

The factor 2 arises from the existeuce of positive and negative errors with equal 

L' . .  
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probability within thc limits of validity of this approximntioir. 
u - dz, wo have 

(6-373 j 

T h e  probability of an error greater than ku is obtained by integration from 
t = ku to c = a.  Xumerical values of this integral as a function of k may be 
found in handbooks. Icor example, we havetaken for table 6-2 some repre- 
eentativc values from the table, “l’robability of Occurrence of Deviations” in 
the Chemical Rubber Publishing Company’e Handbook o,i Chernidry and 
I ’ h y t h ~  

. 

Table 6-2 
k 0 0.674 1 2 3 4 
Probability of t > ka 1.00 0.50 0.32 0.046 0.0027 O.ooOo6 

?\Totice that errors greater than and smaller than 0.8740 are equally prob- 
able;  0.674~ is called the “probable error” and is sometimes given rather than 
the standard doviation when counting data are reported. In plots of experi- 
mental curves it  can be convenient to indicate the probable error of each point 
(by a mark of the proper length); then on the average the smooth curve drawn 
should be expected to paw through about aa many “points” a8 it missea. 
It is unfortunately not strictly correct to use (637b) with (6-35) in the estima- 
tion of tho probability of an error of a funotion of random variables. For 
example, the distribution of the difference8 of two random variables which 
hava Gaussian distributions is not itself Gaussian. Nevertheless, if the func- 
tioii doe8 not vary too rapidly iri the vicinity of ita average, the diatribution of 
values about the average is essentially Gaussian with a variance as given in 
((1-35). 

Comparison with Experiment. W e  now return to a consideration of the 
typical countiiig data in table 6-1. We have already found from the devi- 
atione among the 10 measurernenta u - d ( N 0  - l)-’Z(Xi - 2)’ = 11.9. If 
the counting rate meaaured there representa a random phenomenon, aa we 
expect i t  should, we may evaluate the expected o for the result in any minute 
as the square root of the number of counts. For a typical minute, the ninth, 
we find u = dz = 10, and for other minutes other values not niuch differ- 
ent. Because these values agree reasonably with the 11.9 there is evidence for 
the random nature of the observed counting rate. This test should occasion- 
ally ba made on the data from a counting instrument. 

In  addition to estimating the u for each entry in table 6-1, we may a160 esti- 
mate the us for the average of the 10 observations. This estimate can be per- 
formed in three different wayq and it ie instructive to compare them: 

-- 

. .  
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990 1 ~ = - d O ! , O  = 3.1. 
43: = !IO JiZi 10 

2. The idividual couiititig rates call be sumnicd, which is ecluivaleat to a11 
Again, siiic'c \ve are dealirig with obeervation of (390 counts iii 10 iniiiutes. 

radioactive decay, the standard deviatiou of the nicali i3 give11 t y  ( t i-14~) : 

1 -- 
10 

u'i = - 4 9 9 0  = 3.1. 

3. If the fact that theve data are from radioactive decay id igiiored  id no 
apecial relation such as (G-1-h) is assumed to exist Iiet\reeri each ohservtltioir 
and its standard deviation, tlieli the standard deviation of the nieaii is coni- 
putcd from (6-5) : 

- 3.8. 
' 1276 

It ie importaiit to note that methods 1 aiid 2 give the same aiiswer, as they 
muet; it ie not poeaible to gaiii more informatiou about the ntrrlidord tlwi- 
ation of the meau by breaking a IO-minute observation iiito 10 oiie-iiiiiititcb 
obeervatioiie. The O ;  = 3.1 giver1 by niethods 1 a i d  2 is the correct aiiawr. 
It ia also of interest to see that r-eliiiquiahiug the iiifornitltioli coiitaiiicd iii 

(&le), as in method 3,  dimiiiishes the precisioii of the estinirtte O i  the riieuii. - -  

The average counting rate with its standard deviatioii is f = ('390 _+ d!l!101 
10 = 99.0 f 3.1 counts per mitiute. This nieaiis that the prohrthility that t1w 
true average itj between 95.9 and 102.1 is, from table ti-?, just 1 - 0.32 = 0.1%. 
Actually, when the counting data giveii iii table ( i -1  were ol)ttiiiicvl, t h t  tri.c*mgt* 

rate wae measured much more accurateiy in a 100-niiiiute couiit, arid t h t !  result 

was (10,042 f ~'10,0-i2)/100 = 100.4 +_ 1.0 counts pur niiiiute. 

- 

Counter Eff iciencier. As another application of the methods of this chapter 
to counting technique$, we may estimate the efficiency of a Geiger couliter for 
rays of a given ionizing powcr, with the assumptions that ally ray that pro- 
duces at lemt one ioii pair iii the counter gas is counted aiid that effects tit tlic 
counter walls are negligible. Knowledge of the nature of the radiatioii a i d  
the information give11 in chapter 4 permit an estimate of the 
of ion pairs a to be expected within tlic path length of the 

t :  

; ' t ' .  

average nu aibcr 
radiation i l l  tlic 
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counter tilling gas. Thc probtcm thcti is to tiiid the probability that a ray will 
parJs through t h o  couiitcr, Icaviirg no ioti paim, and thus wiil iiot I)o couiitcd. 
Wo thirik of tho path of tho ray ill tlitr oorriitcw as dividod itrto n uognioiita ol 
cqusl length; if n is vcry largc, cach segmctit will I)c so mall that we may 
iicglect the poseibility of havitrg two ioii pairs in any scgment. 'l'hen just a 
of the n segments will contaiii ioii pairs, arid by dciitiitioti thc probability of 
having an iori pair iii a giveti sugmciit is p = a/n. Now by (4;-8) for the 
binomial distribution we have the probability of no iotr pairs in n segmcrrta; 
that ia, of r = 0 

IV(0) = - n! pO(l - p)" = (1 - p ) i  = (1 - ;J. 
n IO! 

Since tho probability' is evaluated correotly only m n hecomee very largo, 

Thc probability of counting the ray, which is the efficiency to be detcrmincd, 
is then 1 - IY(0) - 1 - e-O. As a particular example, consider a fast /? parti- 
cle with the relatively low specific ionization of 5 ion pairs per millimeter in air 
and a path length of 10 mm in a counter gas which is almost pure argon at 
7.6 cm pressure. We estimate a from these assumptions, correcting for the 
relative densitiee of air and the argon : 

R 
1 - Rt 

R* = -. 

7.6 40 
76 29 

a = 5 X  1OX-X-=7. 

The corresponding estimated counter efficiency is 1 - e-' - 99.1) per cent. 
It should not be expected that an efficiency calculated in this way ia very 
prcciao. Wall offocta may be important, and the assumption of random distri- 
bution of ion paira along the @-ray path ia not entirely consistent with the 
mechanism of energy loss by ionization presented in chapter 4. 

Coincidencq Correction. If a counter haa a recovery time (or dead time 
or resolving time) t after each recorded count during which it  is completely 
insensitive, the total inseneitive time per unit time is Rt, where R ie the 
observed counting rate. If R* is the rate that would be recorded if there were 
110 coincidence lossea, the number of lost counta per unit time is R* - R and is 
given by the product of the rate R* and the fraction of insensitive time RT: 

R* - R - R*Rt, 

'We might have evaluated this probability more easily from the P o b n  distribution 
expreaaioa: "(0) = aoe-./O! - e-.. 

0168601 
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.l number of variants of this forinula are also i i i  use. Oiw exprwioir ( the  
Schiff formula) ia R* = ReP*'; tlih is derived from a calculatioii ( i f  t l r ~  p r o i w  

ally event. X u  eveiit, whether rccordcd or i iot, ia Iivre c ! o i i d i c l w t l  to p i ~ v v t i  t 
the recording of B second event occurring within the tiiiie 7. '  .Illother approxi- 
mate expredaion is derived from the first two terms i i i  the 1 ) i i i o i u i t i I  expaiihir  
of (1 - RT)-I appearing in (6-38): 

R+ = R ( l  + RT) = R + R 2 ~ .  

This form is especially convenient for the interpretation of ai1 experinleiit 
deeigned to measure t by measuring the rates Rl and R.t produced by two 
separate murcea and the rate Rt produced by the two sources together, each 
of these ratee including the backgrouiid effect Rb. 

I 
biiity lC'(0) of haviiip liad 110 cvciit duriiig tlw t i t i le  T iriiiiic*ditrtrly 1 ) r t w d i i i ~  

Obviously, 

R1* + RZ' = Rt* + Rb, 
where we have neglected the coincidence loss in the ineasurexiieiit of the low 
background rate. Replacing by RI* = R1 + Ri2r,  etc., arid rearranging, we 
have 

Ri 4- Rt - Rt - Rb -. . 
Rt2 - R i 2  - R1* r =  

Statistics of Pulse Height Distributions. When a nionoenergetic mirce of 
radiation is meaaured with a proportional- or scintillation-coutiter spect ronicter, 
the observed pulse heights have a Gaussian distribution around the riiovt proh- 
able value. The energy resolution of such an instrument is usually expressed 
in terms of the full width at  half maximum of the pulse height distribution 
curve, stated as a fraction or percentage of the most probable pulse height H. 
Thc pulse height h,$ at the half maxiniuni of the distributioii curve inay be 
obtained from thc ratio of probabilities 

Then (H - h,$ ) ' /Uh*  = In 2, and the full width at  half inaxirnuni is 

where uh is the standard deviatioii of the pulse height distributioii. 
In a proportioiial countcr the spread in pulse heighta for moiioeiictrgetic rayu 

absorbed in the counter vblunie arises from statistical Auctuatioriv in  t h  JIUJII- 

a It may be noticed that the Schiff foriiiula niight be expected to correapond more c l o ~ l y  to 
the conditione of coincidence low in a niechanical register, i r i  w h i r h  rr new J J U ~  w i t h i n  a 
dead time could initiate a new dead-time period, although it would not be recorded. 
eriata aIso the opportunity for coincidence lossee in the electric circuits. 
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ber of ion pairs formed and statistical fluctuations in the gas amplification 
factor. The pulae height is proportional to the product oi the gas amplifi- 
ctrtioii aiid tho iiumbor of ioii poirn, a i d  thoroforo tho frootioiial otatidard devi- 
ation of the pulsc height cclunlu the square root of the Bum of the squares of 
the fractional standard deviations of these two quantities. As an example, 
consider the pulse height spectrum produced by the absorption of manganese 
K X raye in a proportional counter filled with 90 per cent argon and 10 per 
cent methane and operating with a gaa gain of 1OOO. From table 4-1 the 
energy per ion pair is about 27 eV, and therefore the number of ion pairs 
formed by a S.95-keV X ray is 5950/27 = 220 f d&. If the numbers of 
ions collected per initial ion pair have a Poisson distribution, the fractional 
standard deviation in the gas gain is di&$lOOO. Thus 

- g h  - = d22O/22O9 4- 1OOO/1ooO' a 40.00455 + 0.00100 = 0.0745, H 
and the full width at half maximuni is 2.36 X 0.0745 = 0.176 or 17.6 per cent. 
If the gas gain is made sufficiently large, the fluctuations in the number of ion 
pairs determine the resolution, and in this case the resolution of a given counter 
is seen to be inversely proportional to the square root of the energy of the 
ionizing radiation absorbed. 

In  a scintillation counter the statistical fluctuations in output pulse heights 
arise from several source3 (B3). The conversion of energy of ionizing radi- 
ation into photons in the scintillator, the electron emission at the photocathode, 
and the electron multiplication at each dynode are all subject tu statistical 
variations. Although the photocathode emission has been shown to have 
somewhat larger fluctuations than correspond to the Poisson law, the observed 
pulse height distributions are for most practical purposes in sufficiently cloee 
agreement with those calculated on the assumption of Poisson distributions 
for all the statistical processes involved. With this assumption the standard 
deviation of a pulse height distribution for a single energy of ionizing radiation 
absorbed in the phosphor turns out to be approximately 

where H is the most probable pulse height for an inoident energy E keV, 4 i0 

the mean value of the phosphor efficiency (number of light quanta emitted per 
lo00 eV of incident energy), f is the mean value of the light collection efficiency 
at the photocathode, p is the mean value of the photocathode efficiency (num- 
ber of photoelectrons arriving at the first dynode for each photon incident on 
the photocathode), and fi ie the average electron multiplication per dynode. 

In  practice f can be made almost unity, p is of the order of 0.1, fi is usually 
about 3 to 5, and Q is approximately 30 for NaI(Tl), 15 for anthracene, and 
7 for stilbene and for the best liquid scintillators. As an example we eatimate 
the resolution attainable for the 662-keV photopeak of the Cda7 y rays with a 

0868602 



EXERCISES 189 

sodium iodide aciritillrition coutiter. Takinglp = 0.1 and ii = 4, we ohtttii~ 
. .  . 

The correeponding full width at half niaxjmum is 2.N u d l l  = 0.01il or ti. 1 per 
cent, which ie indeed not far from the best resolutiou obtaiired experinleiitally. 
(See the  experimeutal pulse height distribution with 8.3 per cent width at half 
maximum shown in figure 5-8.) 

B1 

B2 

83 
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EXEXCISES 

1. Mr. Jonea’s automobile license carries a sixdigit number. W’hat is the probaldity 
Make the a ~ ~ u m l ) t i o n  that the 

Anstoer: (b) 0.46856. 

that  it has (a) exactly one 4, (b) at least one 4 1  
numbers 0 to 9 inclusive are equally probable for each of the six digits. 

1. Consider the follow&g set of observation*: 

Minute Counb 

_- 

... 
* 4  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

203 
194 
201 
217 
196 
189 
210 
207 
230 
188 

(a) Calculate the average value. (b) What is the standard c h i t i t i o n  of the >et? 

that  an eleventh observation would have a value greater than 230? (e j  \\‘hut i~ 
the probability that a eubsequent set of 10 one-minute observations will hare P J J  

< (c) What ia the standard deviation of the mean? ((1) \\’hat is the proL)aldity 
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aucraqt~ value that ia greater than 2127 
If BO, what is the new average value? 

(f) ShoyId any of the data be rejected? 

(e) 8.810, 
3, ( I lvpn en atom ol B rtrtlloeotlve aubattince wlth decay conatant X, what la (A) the 

probability of its decaying between 0 and di, (b) the probability of ib decaying 
between 0 and t?  

4. .4 sample contains 4 atoms of Lw. What is the probability that exactly 2 of the 
atoms will have decayed in (a) one half-life, (b) two half-lives? 

8. A given proportional counter has a meaaured baokground rate of 900 counta in 
30 minutes. With a aample of a long-lived activity in place, the total meaaured 
rate w a s  1100 counts in 20 minutes. What is the net Bample counting rate and its 
standard deviation? Anmer: 25.0 f 1.9 counts per minute. 

6. Denote by R, and Rb the total and background counting r a h  for a long-lived aam- 
ple and calculate the optimum division of available counting time between sample - 
and background for minimum u on the net counting rate. 

7 .  (a) Sample A, sample B, and background alone were each counted for 10 minutes; 
the observed total rates were 110, 205, and 44 counts per minute, respectively. 
Find the ratio of the activity of aample A t o  that  of sample B and the standard 
deviation of this ratio. (b) Sample C was counted on the aame counter for 2 
minutes and the obseried total rate \vas 155 counts per minute. Find the ratio. 
and its Rtandard deviation, of the activity of C to that  of A. 

dnnuer: (a) 0.41 f 0.027. 
8. Derive (fJ-28) for the probability of a value dl when given a set of observations ml, 

nrt, . . . , m.. 
9. T h e  scintillation spectrometer of exercise 4, chapter 5, is to be used for the meaaure- 

ment of 120-keV conversion electrons. What will be the full width at half maxi- 
mum of the pulse height distribution? 

10. Would the aame spectrometer (exerciee 9) completely resolve (Le., give a dip 
between the p u b  height peaks of) two conversion-electron groups of 44 and 52 keV, 
present in the abundance ratio 2: 11 

I 
Anewm:  (c) 4.16.  

A W : ~  E &. 
4 



Tracers in Chemical Applicutions 

A. THE TRACER METHOD 

Isotopic Tracers. hfotit of the ordiiiary cheiiiical eleiiieiits are cornposed 
of mixtures of isotopes, aiid each niixture reinaiiie esseiit idly iiivariaiit i i i  

compositioii through the course of physical, chemical, and biological proceuaes. 
That this is ao is Bhoivit by the constant isotopic ratios fouiid for elenieiitv from 
widely scattered BourccHI aiid by the fact that atomic wciylits reliable to inairy 
aigtiificaiit figures may be determined by cheniical nieairv. I t  is triic that 
iwlupic fractioiiatioii may bc npprcciable for the lightest elciiieii ts iti \vfricli 
the percentage mass difference bctweeii isotope3 is greatest, aiid tliiv eHtict 
must always be coiisidered in the use of hydrogen tracer isotopes. Howcver, 
apart from these isohpee atid Be' which differs in mam from stahle DeY by 
only about 25 per cent., the next heavier tracer is in carboii where already the 
specific isotope effect may be rieglected iii most tracer work of ordiiitiry 
precision. In  this aectioii we shall asaume that the fact that a giveii iwtope 
may be radioactive does iiot in any way affect its chemical (or tJiological) 
propertiee until it actually undergoes the epontaiieoue radioactive charige. 
The interesting sild important divergellces from this aeeumpt ioii are examined 
in section C. 

Because the isotopic tracer atoma are detected by their radioactivity, they 
behave normally up to the moment of detectioii; after that mometit they LLI'B 

iiot dctected, a i d  their fate is of iio c o ~ r u c ~ ~ u c ~ ~ c c .  Of courae, if thc! r~~uiiltiirg 
atom after the nuclear transformation are themselves radioactive aiid capable 
of a further nuclear change, the detection method must be arraiiged to give a 
reaponuc that measures the proper (in this case the first) radioactive upccies 
only. lcor example, if R a E  is used as k lracer for hianiutli, the Q 

particles from its daughter should not be allowed to enter the detectioii 
instrument but should be abaorbed by a suitable absorber or t)y the couirter 
wall. As a tracer for thorium, UXi is suitable in spite of the fact that most. of 
the detectable radiation will be from ita daughter UXt; the reasoil is that the 

' &me erceptione to the conetancy of isotopic ratios were mentioned in chapter 2. p. 24. 
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